Quiz 3 Solutions

1. The radius of a right circular cone is increasing at a rate of $1.8 \mathrm{~cm} / \mathrm{sec}$ while its height is decreasing at the rate of $2.5 \mathrm{~cm} / \mathrm{sec}$. At what rate is the volume changing when the radius is 120 cms and the height is 140 cms?

Solution. Let r denote the radius, h denote the height, and V denote the volume of the right circular cone. Then we know that

$$
V=\frac{1}{3} \pi r^{2} h
$$

Differentiating V with respect to t using chain rule, we have

$$
\frac{d V}{d t}=\frac{\partial V}{\partial r} \frac{\partial r}{\partial t}+\frac{\partial V}{\partial h} \frac{\partial h}{\partial t}
$$

that is,

$$
\frac{d V}{d t}=\frac{2 \pi r h}{3} \frac{\partial r}{\partial t}+\frac{\pi r^{2}}{3} \frac{\partial h}{\partial t}
$$

We know that $\frac{\partial r}{\partial t}=1.8 \mathrm{~cm} / \mathrm{sec}, \frac{\partial h}{\partial t}=-2.5 \mathrm{~cm} / \mathrm{sec}$, and when $r=120$ cms and $h=140 \mathrm{cms}$, we have that $\frac{d V}{d t}=8160 \pi \mathrm{~cm}^{3} / \mathrm{sec}$.
2. Show that the maximum value of $f(x, y, z)=x^{2} y^{2} z^{2}$ on a sphere of radius r centered at origin is $\left(r^{2} / 3\right)^{3}$.

Solution. The equation of a sphere of radius r centered at origin is given by

$$
x^{2}+y^{2}+z^{2}=r^{2} .
$$

Let $g(x, y, z)=x^{2}+y^{2}+z^{2}$, then by Lagrange Multipliers, there is a $\lambda \in \mathbb{R}$ such that $f(x, y, z)$ attains its extremal value at a solution point (x, y, z) of the following system of equations:

$$
\begin{gathered}
f_{x}=\lambda g_{x}, \\
f_{y}=\lambda g_{y}, \\
f_{z}=\lambda g_{z}, \\
x^{2}+y^{2}+z^{2}=r^{2} .
\end{gathered}
$$

In other words, we have to solve the system

$$
\begin{aligned}
& x\left(y^{2} z^{2}-\lambda\right)=0 \\
& y\left(x^{2} z^{2}-\lambda\right)=0 \\
& z\left(x^{2} y^{2}-\lambda\right)=0 \\
& x^{2}+y^{2}+z^{2}=r^{2}
\end{aligned}
$$

Since we are looking for a maximum value of a non-negative function, we have $x \neq 0, y \neq 0$, and $z \neq 0$ (for if any one of them is 0 , then $f(x, y, z)=0)$.
Consequently, we have $x^{2} y^{2}=y^{2} z^{2}=z^{2} x^{2}$, giving $x^{2}=y^{2}=z^{2}$. Substituting this in $g(x, y, z)=r^{2}$, we have that $3 x^{2}=r^{3}$, or $x= \pm \frac{r}{\sqrt{3}}$. From this, we can deduce that $y= \pm \frac{r}{\sqrt{3}}$ and $z= \pm \frac{r}{\sqrt{3}}$. Thus, there are six possible points where the maximum is attained, and the maximum is $\left(r^{2} / 3\right)^{3}$.
3. Let

$$
f(x, y)= \begin{cases}\frac{x^{3} y-x y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Show that $f_{x y}(0,0) \neq f_{y x}(0,0)$.
(b) Does (a) contradict the theorem on equality of mixed partials? Why or why not?

Solution. (a) For $(x, y) \neq(0,0)$, we have that

$$
f_{x}(x, y)=\frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}}
$$

and using the fact that $f(x, y)=-f(y, x)$ we can deduce that

$$
f_{y}(x, y)=\frac{x^{5}-4 x^{3} y^{2}-x y^{4}}{\left(x^{2}+y^{2}\right)^{2}}
$$

We know that

$$
f_{x y}(0,0)=\frac{\partial f_{x}}{\partial y}=\lim _{h \rightarrow 0} \frac{f_{x}(0, h)-f_{x}(0,0)}{h}=\frac{\left(-h^{5}-0\right) / h^{4}}{h}=-1 .
$$

In a similar fashion, we can show that $f_{y x}(0,0)=1$, which proves (a). (b) For $(x, y) \neq(0,0)$, we have that

$$
f_{x y}(x, y)=\frac{x^{6}+9 x^{4} y^{2}-4 x^{2} y^{4}+4 y^{6}}{\left(x^{2}+y^{2}\right)^{3}}
$$

We can see that along x-axis $f_{x y} \rightarrow 1$, and along y-axis, $f_{x y} \rightarrow 4$. This means that $f_{x y}$ is not continuous at $(0,0)$, which violates the hypothesis of the Theorem, which assumes all second-order must be continuous. Hence, (a) does not contradict the Theorem on equality of mixed partials.

